
Peer-to-Peer I/O (P2PIO) Protocol

Specification Version 0.6

K. Berket, A. Essiari, D. Gunter, W. Hoschek

Distributed Systems Department

Lawrence Berkeley Laboratory

1 Cyclotron Road, Berkeley, CA 94720

{kberket, aessiari, dkgunter, whoschek}@lbl.gov

Abstract

Today’s distributed systems require simple and powerful resource dis-
covery queries in a dynamic environment consisting of a large number of
resources spanning many autonomous administrative domains. The dis-
tributed search problem is hard due to the variety of query types, the
number of resources and their autonomous, partitioned and dynamic na-
ture. We propose a generalized resource discovery framework that is built
around an application level messaging protocol called Peer-to-Peer I/O
(P2PIO). P2PIO addresses a number of scalability problems in a gen-
eral way. It provides flexible and uniform transport-independent resource
discovery mechanisms to reduce both the client and network burden in
multi-hop P2P systems.

1 Introduction

Modern scientific research is conducted by large distributed multi-disciplinary
teams that are cooperating to conduct experiments, simulations, and achieve re-
sults. Such collaborations are often globally distributed and multi-institutional.
A difficult problem for these teams is often finding and organizing data, results,
and resources. Many collaborations solve this problem by defining centralized
storage and managing the resources as a single domain. But, this solution scales
poorly and does not allow for opportunistic use of resources and data reposi-
tories. A much more scalable alternative would be to leverage the ideas of
Peer-to-Peer computing to build a Peer-to-Peer resource discovery framework.

Distributed applications used in modern science are characterized by large
scale, heterogeneity, lack of central control, multiple autonomous administra-
tive domains, unreliable components and frequent dynamic change. In such
applications it is desirable to maintain and query dynamic information about
active participants such as services, resources and user communities in a timely
manner. Peer-to-Peer file sharing systems, instant messaging services, moni-

1



toring infrastructures, resource brokers, job schedulers and flexible bootstrap
configuration systems all share these requirements.

For example, physics science users would like to easily share information such
as Grid input and output files with collaborators, independent of the churn rate
of the collaboration. For good decision-making, a resource broker service would
like to find the available job execution services, their capacity and utilization.
Further, it needs to find the storage services that have given input files, the
storage services that can store output files for the user, as well as find the access
control policies and bandwidth between all involved services.

Administrators and performance analysts would like to find and display the
average latency and bandwidth between all or a subset of Grid nodes over the
last 24-hour period. In case of an environmental or epidemic disaster, a future
emergency response team would like to quickly mine the vast data of a large
variety of active sensors (wind, earth vibrations, highway traffic), and passive
databases (historic sensor data, population statistics, immunization records).
The use cases above share many commonalities, but their current implementa-
tions differ in that they utilize a variety of heterogeneous database technologies,
data formats, query and response languages, routing strategies and network
protocols. They also exhibit different degrees of node churn: some participants
are almost always available (e.g. core servers), while others frequently come and
go (e.g. laptop users).

The distributed search problem is hard due to the number of resources and
their dynamic nature. The number of resources and their churn rate is steadily
increasing. A number of existing P2P solutions are specific to a problem domain
(e.g. Gnutella [2], Freenet [3], Tapestry [4], Chord [5], Globe [6], JXTA [7, 8, 9])
and are not applicable to a more general system. More centralized solutions,
such as RDBMS [10], UDDI [11], GMA [12, 13], ANSA and CORBA [14, 15]
also offer limited solutions that are specific to a domain. However, they do not
scale well to a large dynamic system. Lookup Services such as LDAP and MDS
[16, 17], Jini [18], SLP [19, 20], SDS [21] and INS [22] also do not scale well, or
are not general enough. NEED TO REWRITE THIS PARAGRAPH.

We propose a generalized resource discovery framework that is built around
an application level messaging protocol called Peer-to-Peer I/O (P2PIO), de-
rived from our previous Peer Database Protocol (PDP) [23]. P2PIO addresses a
number of scalability problems in a general way. It provides flexible and uniform
transport-independent resource discovery mechanisms to reduce both the client
and network burden in multi-hop P2P systems.

The P2PIO messaging protocol is transport independent with a well-defined
set of messages that can be used to support a variety of use cases. P2PIO
addresses a number of scalability problems. Its flexible and uniform transport-
independent resource discovery mechanisms can reduce both the client and the
network burden in a multi-hop P2P system. It provides effective and scalable
I/O abstractions which allow for incremental queries that can gather results
sequentially rather than all at once. This is similar to the sequential file I/O
model. P2PIO can also be seen as extending traditional distributed database
I/O and query mechanisms to a peer-to-peer setting. To support a large vari-

2



ety of use cases, P2PIO is designed to support any query language, including
XQuery, SQL, XPath and regular expressions. By providing routed and di-
rect response mode [1], it supports different models of control, efficiency and
security. Arbitrary scope and neighbor selection policies can be specified to en-
able smart dynamic routing. Such policies allow a client to select the data and
peers the query should be applied to. The communication protocol is trans-
port independent to be useful in various application environments, and hence
can be implemented over TCP, multicast, SOAP, etc. An implementation over
SOAP/HTTP(S) is particularly important for interoperability in heterogeneous
environments, and for integration into existing frameworks and established Grid
Web Service standards such as OGSI/WSRF. Efforts to create a Global Grid
Forum P2P resource discovery research group based on P2PIO are currently
ongoing.

A P2P I/O mechanism should provide familiar, effective and scalable I/O
abstractions to P2P networks. Traditional sequential, stateful, segmented file
I/O, both in synchronous and asynchronous manner provides such mechanisms:
A very large file does not need be read into memory in one large read; rather, it
is better sequentially read in segments of N bytes each. In asynchronous mode,
applications are notified whenever a byte segment of a (remote) file becomes
available. Hence, an important feature of P2PIO is that it is designed to enable
incremental discovery by extending these familiar, effective and scalable I/O
mechanisms to the P2P environment: A client opens a transaction that specifies
a query. It then iterates over the items of the query result set. It reads a segment
of N items from the result set, processes it, then reads the next segment of
N items, and so on. After reading parts of or all of potentially millions of
items, the client closes the transaction, indicating to the P2P network that it
may release state and resources associated with the transaction. Items may be
read either in synchronous style (single mode, e.g. polling catalog browsing)
or in asynchronous style (multi mode, e.g. pushing event notifications such
as monitoring updates). In single mode the client retains control over flow
and resource consumption whereas in multi mode the client effectively transfers
such control to the server. Similarly, opening a transaction can be done in
synchronous or asynchronous manner, using invitations. Coarse grained high-
level abstractions (e.g. reading all items of a query) can be layered on top of
these fine grained low-level abstractions.

The abstractions that P2PIO can support are quite powerful. In particular,
the use cases outlined in the motivation can be implemented by application-
specific plug-ins once the framework is in place. For example, the resource
broker use case could use an XQuery language module, in conjunction with an
XML module, flooding as a routing strategy, a simple XPath query for neighbor
selection, and a topology adaptation algorithm directed towards high availabil-
ity.

The rest of this paper is organized as follows. We first discuss the problem
in further detail and present existing systems. Then, we discuss the specific
goals of the P2PIO protocol and introduce the mechanisms that solve these
problems. We then discuss the P2PIO messaging model, followed by the message

3



specifications.

2 Overview (need to rewrite)

The P2PIO protocol is an application level messaging protocol for generalized
resource discovery. It addresses a number of scalability issues at the client
and network level. In this section we discuss these issues and the mechanisms
provided by P2PIO to address them.

2.1 General Motivation

In many systems querying is accomplished by filtering at the client. This is in-
efficient as the client may have to receive a large number of results and perform
substantial processing. The P2PIO protocol provides support for efficient han-
dling of simple and medium queries, and can also support complex queries. The
client is given the ability to have the result set be routed through the network.
This allows for filtering to be applied in a distributed manner and reduces the
burden on the client.

In use cases regarding resource discovery, a client often issues a query that
generates a large number of results. In many instances the client is satisfied by
the first couple of responses and disregards the remainder. This scenario wastes
resources at the client and in the network. P2PIO introduces a mechanism that
the client can use to avoid this scenario. The client is given the ability to iterate
through the result set. This allows the client to control the number of incoming
results.

Efficient query routing in a resource discovery system increases the scalability
of the system. The P2PIO protocol provides support for efficient smart dynamic
query routing by allowing the client to specify a neighbor selection query as part
of its request. NEED MORE TEXT HERE.

Routing of the result set through the network is not efficient if intermediate
processing is not necessary, as in the case of simple queries. Here, it is more
efficient to deliver the result set directly to the client. The P2PIO protocol
allows the client to have the result set sent directly to the client. In order to
alleviate the load on the client in this mode, an invitation is sent to the client
by the data provider prior to sending the result set.

2.2 Familiar, Effective and Scalable I/O Abstractions

A P2P I/O mechanism should provide familiar, effective and scalable I/O ab-
stractions to P2P networks, along the lines of sequential, stateful, segmented
file I/O, both in synchronous and asynchronous manner.

Here, a client opens a file, and is given a unique file handle. Using the file
handle as context, it then iterates over the file. It reads a segment of N bytes,
processes it, then reads the next segment of N bytes, and so on. After reading
parts or all of the file, the client closes the file, indicating to the file system that

4



it may release state and resources associated with the file handle. Typically, the
next N bytes may be read in synchronous style (e.g. polling file browsing) or in
asynchronous style (e.g. pushing monitoring updates). Similarly, opening a file
can be done in synchronous or asynchronous manner. Coarse grained high-level
APIs (e.g. reading all bytes of the file into a string) can be layered on top of
these fine grained low-level abstractions.

In analogy to traditional sequential, stateful, segmented file I/O, a P2PIO
client opens a transaction that specifies a query, and is given a unique transac-
tion identifier. Using the transaction identifier as context, it then iterates over
the items of the query result set. It reads a segment of N items from the result
set, processes it, then reads the next segment of N items, and so on. After
reading parts or all of the items, the client closes the transaction, indicating to
the P2P network that it may release state and resources associated with the
transaction. The next N items may be read in synchronous style (single mode,
e.g. polling catalog browsing) or in asynchronous style (multi mode, e.g. push-
ing monitoring updates). In single mode the client retains control over flow
and resource consumption whereas in multi mode the client effectively transfers
such control to the server. Similarly, opening a transaction can be done in syn-
chronous or asynchronous manner, using invitations. Coarse grained high-level
APIs (e.g. reading all items of a query into a set) can be layered on top of these
fine grained low-level abstractions.

Besides extending file I/O like mechanisms to the P2P case, P2PIO can also
be seen as extending traditional distributed database I/O and query mechanisms
to the P2P case.

2.3 Simple to Complex Queries

A P2P network can be efficient in answering queries that are recursively parti-
tionable [23]. Here, query processing can be parallelized and spread over all par-
ticipating nodes. Potentially very large amounts of information can be searched
while investing little resources such as processing time per individual node. The
recursive parallel spread of load implied by a recursively partitionable query is
the basis of the massive P2P scalability potential. However, query performance
is not necessarily good, for example due to high network I/O costs. Example
queries are as follows:

• Simple Query (recursively partitionable): Find all (available) services that
have download capacity greater than 10 MB/s.

• Medium Query (recursively partitionable): Return the number of replica
catalog services. Find the service with the largest uptime.

• Complex Query (not recursively partitionable): Find all (execution service,
storage service) pairs where both services of a pair live within the same
network domain.

To support a large variety of use cases, P2PIO is designed to support all given
query types. P2PIO is an extensible protocol framework. Arbitrary queries in

5



arbitrary query languages can be posed, returning arbitrary items as query
results. For example, we have prototyped query plugins for XQuery, SQL,
XPath and regular expressions.

2.4 Multiple Response Modes

A P2P I/O mechanism should support use cases requiring different levels of
control, efficiency, security, trust and protection against DOS attacks, leading
to routed and direct response mode [23]. Under Routed Response, items are
fanned back into the originator along the paths on which the query flowed
outwards. Each server returns to its client not only its own local items but also
all remote items it receives from neighbors. Under Direct Response, items are
not returned by routing through intermediary peers. Each server that has local
items directly invites the agent to retrieve items, which the agent then combines
and hands back to the originator.

Neigher response mode is ideal for all use cases. Hence, P2PIO is designed
to support both response modes.

2.5 Smart Dynamic Routing

To enable smart dynamic routing [24], arbitrary scope and neighbor selection
policies can be specified. Such policies allow a client to select the data and peers
the query should be applied to. NEED MORE HERE.

2.6 Reliability etc.

The protocol is transport independent to be useful in various environments,
and hence can be implemented over TCP, multicast, SOAP, etc. For improved
reliability message timeouts are used, and persistent transport connections are
not required. This also helps in dealing with heterogeneous peer capabilities
and capacities. NEED MORE HERE.

3 P2PIO Messaging Model

3.1 Transactions

We consider a network of peer processes. Each peer forwards, sends, receives
and processes messages according to this specification. All message exchanges
occur within the context of a transaction. The specification of the entire P2P
network is given by defining the individual transactional message exchanges
between any two peers.

A transaction is a sequence of one or more message exchanges between two
peers for a given query. This non-trivial transaction model is in contrast to
a simpler model where a transaction consists of a single request-response mes-
sage exchange (e.g. HTTP). The former model is stateful whereas the latter is
stateless. A peer can concurrently handle multiple independent transactions.

6



A process that initiates a transaction is called an originator. The originator
may not necessarily be a part of the network of peers, but it must interact with
a peer as its entry point into the system. The peer that the originator interacts
with is called the agent for this transaction. The agent in turn interacts with the
rest of the P2P network on behalf of the originator. The interactions between
the originator and agent MAY be specified on a per application basis, and thus
are not discussed in this specification.

When a pair of peers is involved in a message exchange, the initiator of the
exchange is referred to as the requestor or client, and the other peer is referred
to as the responder or server. When an individual message is discussed we
will refer to the peer that sent that message as the source and the peer that
(potentially) receives the message as the destination.

A transaction is identified by a transaction identifier. All messages of a
given transaction MUST carry the same transaction identifier. The transaction
identifier is a UUID [25] that SHOULD be globally unique for the entire lifetime
of the transaction. In practice, it is sufficient for the UUID to be unique with
exceedingly large probability, suggesting the use of a 128 bit integer computed
by a cryptographic hash digest function such as MD5 [26] or SHA-1 [27] over
originator IP address, current time and a random number.

3.2 Message Exchanges

The P2PIO messaging model employs four request messages (OPEN, RECEIVE,
INVITE, CLOSE) and four response messages (SEND, FINALSEND, OK, ER-
ROR).

OPEN. An OPEN message along with its query and timeout is used to ini-
tialize a transaction through which items matching the query may subsequently
be retrieved. A peer accepting an OPEN message MUST respond with an OK
or ERROR message before forwarding the OPEN message to its dependents.
The message MAY be forwarded along peer hops through the P2P topology, in
which case the transaction identifier MUST stay invariant across hops. Items
are explicitly requested via a subsequent RECEIVE message. An OPEN mes-
sage contains the opaque query itself, a timeout, a response mode indicator
(see below), as well as a transaction identifier that MUST be chosen by the
originator.

RECEIVE, SEND and FINALSEND. A RECEIVE message is used by
a client to request remaining query items from a server. It requests that the
server SHOULD return a set of at least min and at most max items from the
(remainder of the) item set. This corresponds to the next(N) method of an
iterator (operator). For example, a low latency use case can use min=1, max=10

to indicate that at least one and at most ten items SHOULD be delivered in
response to the RECEIVE request.

A RECEIVE request contains a parameter that asks for delivery of items in
either single (pull) or multi (push) mode, restricting the number of messages

7



that may be sent in response to this RECEIVE message. In single mode a
single RECEIVE request MUST precede every single FINALSEND response.
An example sequence is RECEIVE-FINALSEND-RECEIVE-FINALSEND. In
multi mode a single RECEIVE request asks for a sequence of zero or more SEND
messages followed by a FINALSEND message. A client need not explicitly
request more items, as they are automatically pushed. An example sequence is
RECEIVE-SEND-SEND-FINALSEND-RECEIVE-SEND-FINALSEND.

A FINALSEND message indicates the end of the current RECEIVE ex-
change. The FINALSEND message MAY optionally contain a parameter mark-
ing the transaction as ”still open”. If this parameter is not present it indicates
that the transaction is closed due too item set exhaustion. A FINALSEND
marked as ”still open” MAY also optionally contain the number of remaining
items currently locally available for immediate delivery in response to a subse-
quent RECEIVE. A FINALSEND marked as ”still open” MAY also optionally
contain the current estimated number of globally remaining total items eventu-
ally available for delivery in response to a subsequent RECEIVE. A client can
successively issue RECEIVE messages until the item set is exhausted. A client
need not retrieve all items from the entire item set. For example, after having
received the first 10 items it MAY issue a CLOSE request.

CLOSE. A client may issue a CLOSE message to close the transaction, in-
forming the server that the remaining items (if any) are no longer needed and
can safely be discarded.

OK and ERROR. An OK message is used to positively acknowledge a mes-
sage. An ERROR message is used to negatively acknowledge a message.

INVITE. An INVITE message is used to indicate that, in response to a direct
response OPEN message, the source of the INVITE has items available. INVITE
messages only apply to Direct Response mode (see below).

Message Exchange Patterns. A pair of peers interacts by exchanging mes-
sages. Discrete messages belong to well-defined message exchange patterns. For
example, the pattern of synchronous exchanges (one-to-one, pull) is supported
as well as the pattern of asynchronous exchanges (one-to-many, push). The
following message exchanges are permitted:

OPEN --> OK | ERROR

RECEIVE --> (SEND [0:N], FINALSEND) | ERROR

INVITE --> OK | ERROR

CLOSE --> OK | ERROR

For example, a server responds to a RECEIVE message with an ERROR
message or zero or more SEND messages followed by a FINALSEND message.
Another example message exchange is OPEN-OK. An example transaction is a
OPEN-RECEIVE-FINALSEND-RECEIVE-FINALSEND-CLOSE message se-
quence.

8



Routed Single Routed Multi Direct Single Direct Multi

--> OPEN

<-- OK

--> RECEIVE

<-- FINALSEND

--> RECEIVE

<-- FINALSEND

--> CLOSE

<-- OK

--> OPEN

<-- OK

--> RECEIVE

<-- SEND

<-- FINALSEND

--> RECEIVE

<-- SEND

<-- FINALSEND

--> CLOSE

<-- OK

--> OPEN

<-- OK

<-- INVITE

--> OK

--> RECEIVE

<-- FINALSEND

--> RECEIVE

<-- FINALSEND

--> CLOSE

<-- OK

--> OPEN

<-- OK

<-- INVITE

--> OK

--> RECEIVE

<-- SEND

<-- FINALSEND

--> RECEIVE

<-- SEND

<-- FINALSEND

--> CLOSE

<-- OK

Figure 1: Message flows from client to server (“-->”) and back (“<--”).

7

6

5

3

4

2
Open

Item set

Receive

Peer

Originator

Agent Peer

81

43

2

Direct Response
with Invitation

1

109567

Invitation

Routed Response

11

8

Figure 2: Routed and Direct Response Modes.

Response Modes. The message exchanges of a transaction depend on the
response mode in use. Under Routed Response, items are fanned back into the
originator along the paths on which the query flowed outwards. Under Direct
Response, items are not returned by routing through intermediary peers. Each
server that has local items directly invites the agent to retrieve items, which the
agent then combines and hands back to the originator. Invitation occurs with an
INVITE message that solicits a RECEIVE message. Interaction then proceeds
with the normal RECEIVE-SEND-CLOSE pattern initiated by the agent. The
messaging model is exemplified by the message flows depicted in Figure 1 and
Figure 2.

A transaction in Routed Response mode consists of an OPEN exchange,
followed by zero or more RECEIVE exchanges, followed by zero or one CLOSE
exchange. In contrast, a transaction in Direct Response mode consists of an
OPEN exchange from the agent, followed by one INVITE exchange from each
responder to the agent (offering matching items for the query), followed by zero
or more RECEIVE exchanges from the agent to each responder, followed by
zero or one CLOSE exchange from the agent to each responder.

9



These response modes are summarized as follows:

Routed Response Mode: OPEN --> RECEIVE [0..N] --> CLOSE [0..1]

Direct Response Mode: OPEN --> INVITE[0..k] --> RECEIVE [0..N] --> CLOSE [0..k]

3.3 State Transitions

A peer maintains a state table. For each transaction (i.e. query) at least the
transaction identifier, transaction timeout, and an open/closed state flag are
kept. The identifier and timeout of a transaction are kept constant throughout
the P2P network so that loops in message routes can be detected reliably. An
example state table reads as follows:

Transaction Identifier Transaction Timeout State

100 20 Closed
200 50 Open

A transaction is known to a peer if the state table already holds a transaction
identifier equal to the transaction identifier of the transaction. Otherwise, it is
said to be unknown. A known transaction can be in two states: open or closed.
The state transitions from unknown to open to closed and back to unknown
state are depicted in Figure 3 and defined as follows:

• Unknown to Open. When an unknown transaction arrives with an
OPEN message, it moves into open state. When a transaction moves into
open state, it becomes known and MAY be forwarded to the neighbors
obtained from neighbor selection.

• Open to Closed. A transaction moves from open into closed state when
its transaction timeout has been reached, if the item set is exhausted
by a FINALSEND, if a client issues a CLOSE to indicate that it is no
longer interested in the (remainder of the) item set, or if one of several
errors occur. Under direct response, a transaction to a non-agent peer also
moves from open into closed state if the query produces no local items,
or if it does produce local query items but the INVITE request is not
accepted by the agent.

When a transaction moves into closed state, a CLOSE request SHOULD
be asynchronously forwarded to all dependents in order to inform them as
well. A peer depends on a set of other peers (dependents) that are involved
in item set delivery. Under Routed Response, the dependants are the peers
obtained from neighbor selection. Under Direct Response, the dependents
of an agent are the peers from which the agent has accepted an INVITE
message, whereas all other peers have no dependents.

• Closed to Unknown. A transaction moves from closed state into un-
known state when its transaction timeout has been reached. In other
words, the transaction SHOULD be deleted from the state table.

10



1. CLOSE received
2. SEND exhausts result set

3. INVITE not accepted (Direct Response non empty resultset)
4. True (Direct Response empty local result set)

5. Various errors
6. Transaction timeout

OPEN

UNKNOWN

Transaction timeout

Trigger action:
Forward OPEN
to neighbors

CLOSED

OPEN

Trigger action:
Forward CLOSE
to dependents

Figure 3: Peer State Transitions.

Message Acceptance and Rejection. An OPEN request MAY be accepted
if the transaction is unknown. If an already known OPEN arrives, this usually
indicates loop detection [28, 29]. The message MUST be rejected with an ER-
ROR (e.g. ”transaction already in use”). When a message other than OPEN
arrives that has an unknown transaction identifier, it MUST be rejected with
an ERROR (e.g. ”transaction unknown”). RECEIVE, SEND, FINALSEND,
CLOSE and INVITE messages MAY be accepted for a transaction in open
state. A message for a transaction in closed state MUST NOT be accepted;
the response to such a message is always an ERROR (e.g. ”transaction already
closed”).

4 Message Specifications

This section defines the detailed normative semantics and syntax of all individual
messages. P2PIO uses straightforward XML representations specified by means
of a W3C XML Schema [30]. These XML schemas are given in the appendix.

4.1 OPEN

An OPEN message along with its query is used to initialize a transaction through
which items matching the query MAY subsequently be retrieved. An OPEN
message contains the query itself as well as a transaction identifier. P2PIO
considers a query as an opaque information payload. A query is an arbitrary
application-defined XML fragment. Particular query schemas are commonly
used for specific applications, but P2PIO does not require the use of a query
schema or any schema language. The concrete type of query is uniquely identi-
fied by the namespace and element name in use.

An OPEN message also contains scope hints that directly or indirectly define
the global input fed to the query. The scope contains a transaction timeout, a
maximum hop count, an optional neighbor selection query [24] and, optionally,
arbitrary additional data as an extension.

11



The transaction timeout specifies the absolute time (in milliseconds) at which
this transaction SHOULD timeout and be implicitly closed. The destination
MAY disagree with the given timeout, in which case it MUST respond with an
ERROR message. Otherwise it MAY respond with an OK message, and MUST
use the same timeout value in any forwarded OPEN messages.

The hop count indicates the maximum number of hops that this transaction
SHOULD be forwarded. It MUST be greater than or equal to zero. A value of
zero indicates that the query MUST NOT be forwarded anymore and hence be
only applied to the local database of the server. The destination MUST reject
a hop count less than zero as an ERROR and reduce the value by at least one
in any forwarded OPEN messages.

The optional neighbor selection query specifies to which neighbors the OPEN
message SHOULD be forwarded. If it is not given, the server MAY choose
to use any neighbor selection policy it sees fit. A neighbor selection query is
an arbitrary XML fragment, the type of which is uniquely identified by the
namespace and element name in use.

The message also contains a hint indicating what response mode MUST
be used (Routed Response or Direct Response). Under Direct Response, also
a locator to one or more network endpoints of the agent peer MUST be in-
cluded, indicating where and over which transport mechanism an INVITE re-
quest SHOULD be sent. This enables peers with matches to INVITE the agent
to RECEIVE their respective item set. Endpoint order is from most preferred
to least preferred. The inviting peer MUST use only a single such endpoint as
a destination for its INVITE message. An endpoint is a URI but SHOULD in
fact be a URL.

An example OPEN message is as follows:

<open xmlns="http: //dsd.lbl .gov/p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<query >

<firefish:p2pQuery mergeOperator="concat " xmlns:firefish="http:

//dsd.lbl .gov/firefish -1.0">

<firefish:dataSourceQuery >

<firefish:xPathQuery >

<firefish:expression >/*/* </firefish:expression >

<firefish:namespaces />

</firefish:xPathQuery >

</firefish:dataSourceQuery >

</firefish:p2pQuery >

</query >

<scope >

<timeout >2003 -10 -03 T13:48:36 .917 -07 :00 </timeout >

<maxHops >3 </maxHops >

<extension />

</scope >

<responseMode >

<routedResponseMode/>

</responseMode >

</open >

12



4.2 RECEIVE

A RECEIVE message is used by a client to request query items from a server.
It requests that the server SHOULD return a set of at least min and at most
max items from the (remainder of the) item set. This corresponds to the next()
method of an iterator (operator). We have 1 ≤ min ≤ max. For example, a
low latency use case can use min=1, max=10 to indicate that at least one and
at most ten items SHOULD be delivered in response to this RECEIVE request.
min=max=infinity indicates that all remaining items SHOULD be delivered.

A client can successively issue RECEIVE messages until the item set is
exhausted. A client need not retrieve all items from the entire item set. For
example, after having received the first 10 items it MAY issue a CLOSE request.

A RECEIVE request contains a parameter that asks for delivery of items in
either single (pull) or multi (push) mode, restricting the number of messages
that may be sent in response to this RECEIVE message. In single mode a single
RECEIVE request MUST precede every single FINALSEND response. An ex-
ample sequence is RECEIVE-FINALSEND-RECEIVE-FINALSEND. In multi
mode a single RECEIVE request asks for a sequence of zero or more SEND
messages followed by a FINALSEND message. A client need not explicitly re-
quest more items, as they are automatically pushed. An example sequence is
RECEIVE-SEND-SEND-FINALSEND-RECEIVE-SEND-FINALSEND. A FI-
NALSEND message indicates the end of the current RECEIVE exchange.

A RECEIVE request also has an optional timeout (in milli seconds) indicat-
ing the absolute time at which this RECEIVE request SHOULD expire. If the
timeout is not specified, the server SHOULD set the timeout for this request
to the timeout associated with this transaction. In any case, a server MAY
choose its timeout as it sees fit, but the timeout MUST be less than or equal
to the overall transaction timeout. Upon timeout any response messages from
the server MAY be ignored by the client. Upon timeout, if the server has not
yet responded with the FINALSEND of this request, the server MUST now
return with a FINALSEND, containing whichever items it has available within
the item number constraints specified by the client, possibly zero items.

An example RECEIVE message is as follows:

<receive mode="single " xmlns ="http: // dsd.lbl.gov /p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<min >100 </min >

<max >10000 </max >

<timeout >2003 -10 -03 T13:48:38 .199 -07 :00 </timeout >

</receive >

4.3 SEND and FINALSEND

When a peer accepts a RECEIVE message, it responds with zero or more SEND
messages followed by a FINALSEND message, in total containing P items from
the (remainder of the) item set. Individual SEND and FINALSEND messages
MUST each contain zero or more items. P2PIO considers an item as an opaque

13



information payload. An item is an arbitrary application-defined XML frag-
ment. Particular item schemas are commonly used for specific applications, but
P2PIO does not require the use of an item schema or any schema language.

A FINALSEND message indicates the end of the current RECEIVE ex-
change. We have P ≤ max. We MAY have min ≤ P. For example, zero or less
than min items MAY be delivered when the entire query item set is exhausted,
on timeout, or if the peer decides to override and decrease P for reasons including
resource consumption control.

The FINALSEND message MAY optionally contain a parameter marking
the transaction as ”still open”. If this parameter is not present it indicates that
the transaction is closed due too item set exhaustion, in which case the server
MUST respond with an ERROR to any subsequent RECEIVE message. If the
parameter is present the client MAY issue a subsequent RECEIVE request.

A FINALSEND marked as ”still open” MAY also optionally contain the
number of remaining items currently locally available for immediate delivery in
response to a subsequent RECEIVE (locallyAvailable). locallyAvailable
MUST be greater than or equal to zero. locallyAvailable=0 can indicate
that remote peers have not yet delivered items necessary to return more than
zero items for a subsequent RECEIVE. If locallyAvailable is not present, it
indicates that the quantity is unknown.

A FINALSEND marked as ”still open” MAY also optionally contain the
current estimated number of globally remaining total items eventually avail-
able for delivery in response to a subsequent RECEIVE (globallyAvailable).
The actual number of items that can (later) be delivered may be larger. It
SHOULD not be smaller, except if other peers fail to deliver their suggested
items. globallyAvailableMUST be greater than or equal to zero, and greater
or equal to locallyAvailable, if present. If globallyAvailable is not present,
it indicates that the quantity is unknown.

An example SEND message is as follows:

<send xmlns="http: //dsd.lbl .gov/p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<itemSet >

<article code=" 13563275 " xmlns="">

<headline_text >Version 1.0 XML Standard </headline_text >

<source >W3C </source >

</article >

<article code=" 13560996 " xmlns="">

<headline_text >P2P Research Accelerating </headline_text >

<source >BBC </source >

</article >

</itemSet >

</send >

An example FINALSEND message is as follows:

<finalSend xmlns ="http: // dsd.lbl.gov /p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<itemSet >

14



<article code=" 13563275 " xmlns="">

<headline_text >Version 1.0 XML Standard </headline_text >

<source >W3C </source >

</article >

<article code=" 13560996 " xmlns="">

<headline_text >P2P Research Accelerating </headline_text >

<source >BBC </source >

</article >

</itemSet >

<isStillOpen >

<locallyAvailable >100 </locallyAvailable >

<globallyAvailable >1000000 </globallyAvailable >

</isStillOpen >

</finalSend >

4.4 CLOSE

A client MAY issue a CLOSE message to close the transaction, informing the
server that the remaining items (if any) are no longer needed and can safely
be discarded. The server MUST respond immediately with an OK or ERROR
message. At the same time, the server MAY asynchronously forward the CLOSE
to neighbors involved in item set delivery, which in turn MAY forward the
CLOSE to their neighbors, and so on. Being informed of a CLOSE allows a
server to release resources as early as possible. Strictly speaking, a client need
not issue a CLOSE, and a server need not forward further a CLOSE, because a
query eventually times out anyway. Even though this is considered misbehavior,
a server must continue to operate reliably under such conditions.

An example CLOSE message is as follows:

<close xmlns="http: //dsd.lbl.gov/p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

</close >

4.5 INVITE

An INVITE message is used to indicate that, in response to a direct response
OPEN message, the source of the INVITE has items available. INVITE mes-
sages only apply to Direct Response mode. Here, a peer forwards the query to
the peers obtained from neighbor selection without ever waiting for their item
sets. The peer only applies the query to its local database. If the local item
set is not empty, the peer directly contacts the agent with an INVITE mes-
sage to solicit a RECEIVE message. Interaction then proceeds with the normal
RECEIVE-SEND-CLOSE pattern, either in single (pull) or multi (push) man-
ner (see above).

An INVITE message MUST contain a parameter marking the transaction
as ”still open”. It MAY also optionally contain the number of remaining items
currently locally available for immediate delivery in response to a subsequent
RECEIVE (locallyAvailable). locallyAvailableMUST be greater than or

15



equal to zero. It MAY also optionally contain the current estimated number of
globally remaining total items eventually available for delivery in response to a
subsequent RECEIVE (globallyAvailable). The actual number of items that
can (later) be delivered MAY be larger. globallyAvailable MUST be greater
than or equal to zero, and greater or equal to locallyAvailable, if present.

An INVITE message MAY also include a locator to one or more network
endpoints to indicate where and over which transport mechanism RECEIVE
requests SHOULD be sent. Endpoint order is from most preferred to least
preferred. An endpoint is a URI but SHOULD in fact be a URL. The destination
MUST use only a single such endpoint for all RECEIVEs, and all endpoints
MUST offer the same items for the given transaction. Hence within a single
transaction, parallel striped transfers across endpoints are not permitted.

An example INVITE message is as follows:

<invite xmlns ="http: // dsd.lbl.gov /p2pio -1.0">

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<locator >

<endpoint >http: // doggy.lbl .gov:8080 /services /firefish </endpoint

>

</locator >

<isStillOpen >

<locallyAvailable >100 </locallyAvailable >

<globallyAvailable >1000000 </globallyAvailable >

</isStillOpen >

</invite >

4.6 OK

An OK message is used to positively acknowledge a message of a transaction.
It contains no other information.

An example OK message is as follows:

<ok xmlns="http: //dsd.lbl.gov/p2pio -1.0" >

<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

</ok >

4.7 ERROR

An ERROR message is used to negatively acknowledge a message. It indicates
that some kind of error has occured within the transaction. An ERROR mes-
sage contains a 3-digit integer status/error code used for programatic handling
of errors, as well as a status reason giving a short textual human readable sta-
tus/error description of the status code. Further, it MAY contain zero or more
implementation dependent error cause strings (e.g. for stack traces).

An example ERROR message is as follows:

<error xmlns="http: //dsd.lbl.gov/p2pio -1.0">

16



<transactionID >4f76 -8d0a -40 d81de79445 </transactionID >

<code >557 </code >

<codeAsText >Transaction already closed </codeAsText >

</error >

5 Complete Normative XML Schema

The following are the complete normative W3C XML schema specifications for
the messages described in this document. The definitions in this section MUST
be considered normative, if there are any discrepancies between the definitions
in this section and those portions described in other sections above.

Listing 1: Complete Normative W3C XML Schema for P2PIO Protocol

<!-- ############################################### -->

<!-- XML Schema specification of P2PIO protocol -->

<!-- $ Revision: 1.2 $ , $ Date: 2004/01/30 01 :01:05 $ -->

<!-- ############################################### -->

<xsd:schema xmlns:xsd ="http: //www .w3.org /2001/ XMLSchema "

xmlns:p2pio ="http: // dsd.lbl.gov /p2pio -1.0"

targetNamespace="http: //dsd.lbl .gov/p2pio -1.0"

elementFormDefault=" qualified "

<xsd:element name="open" type=" p2pio:OpenType"/>

<xsd:element name="receive " type=" p2pio:ReceiveType"/>

<xsd:element name="send" type=" p2pio:SendType"/>

<xsd:element name="finalSend " type="p2pio:FinalSendType "/>

<xsd:element name="close" type="p2pio:CloseType"/>

<xsd:element name="invite " type="p2pio:InviteType"/>

<xsd:element name="ok" type="p2pio:OkType"/>

<xsd:element name="error" type="p2pio:ErrorType"/>

<xsd:element name="itemSet " type=" p2pio:ItemSetType"/>

<xsd:element name="scope" type="p2pio:ScopeType"/>

<xsd:element name="stillOpen " type="p2pio:StillOpenType "/>

<xsd:element name="transactionID" type=" xsd:string "/>

<xsd:complexType name=" OpenType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

<xsd:element name="query " type="p2pio:AnyQueryType"/>

<xsd:element name="scope " type="p2pio:ScopeType"/>

<xsd:element name=" responseMode" type=" p2pio:ResponseModeType

"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" AnyQueryType">

<xsd:sequence >

<xsd:any processContents="lax">

</xsd:any >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ResponseModeType">

17



<xsd:choice >

<xsd:element name=" routedResponseMode">

<xsd:complexType/>

</xsd:element >

<xsd:element name=" directResponseMode">

<xsd:complexType >

<xsd:sequence >

<xsd:element name="locator " type="p2pio:LocatorType"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

</xsd:choice >

</xsd:complexType >

<xsd:complexType name=" ReceiveType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

<xsd:element name="min" type=" xsd:positiveInteger"/>

<xsd:element name="max" type=" xsd:positiveInteger"/>

<xsd:element name="timeout " type="xsd:dateTime" minOccurs ="0"

/>

</xsd:sequence >

<xsd:attribute name="mode">

<xsd:simpleType >

<xsd:restriction base="xsd:string ">

<xsd:enumeration value="single "/>

<xsd:enumeration value="multi "/>

</xsd:restriction >

</xsd:simpleType >

</xsd:attribute >

</xsd:complexType >

<xsd:complexType name=" SendType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

<xsd:element name="itemSet " type="p2pio:ItemSetType"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" FinalSendType">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

<xsd:element name="itemSet " type="p2pio:ItemSetType"/>

<xsd:element name=" isStillOpen " type="p2pio:StillOpenType "

minOccurs ="0"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" CloseType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" InviteType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

18



<xsd:element name="locator " type="p2pio:LocatorType"

minOccurs ="0"/>

<xsd:element name=" isStillOpen " type="p2pio:StillOpenType "/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="OkType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ErrorType ">

<xsd:sequence >

<xsd:element name=" transactionID" type="xsd:string "/>

<xsd:element name="code" type="p2pio:ErrorCodeType"/>

<xsd:element name=" codeAsText " type="xsd:string "/>

<xsd:element name="cause " type="xsd:string " minOccurs ="0"

maxOccurs ="unbounded "/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ItemSetType ">

<xsd:sequence >

<xsd:any processContents="lax" minOccurs ="0" maxOccurs ="

unbounded ">

</xsd:any >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ExtensionType">

<xsd:sequence >

<xsd:any processContents="lax" minOccurs ="0" maxOccurs ="

unbounded ">

</xsd:any >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ScopeType ">

<xsd:sequence >

<xsd:element name="timeout " type="xsd:dateTime"/>

<xsd:element name="maxHops " type="xsd:unsignedInt"/>

<xsd:element name=" neighborSelection" type="

p2pio:AnyQueryType" minOccurs ="0"/>

<xsd:element name=" extension " type=" p2pio:ExtensionType"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" LocatorType ">

<xsd:sequence >

<xsd:element name=" endpoint " type="xsd:anyURI " minOccurs ="1"

maxOccurs ="unbounded "/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" StillOpenType">

<xsd:sequence >

19



<xsd:element name=" locallyAvailable" type="xsd:unsignedInt"

minOccurs ="0"/>

<xsd:element name=" globallyAvailable" type="xsd:unsignedInt"

minOccurs ="0"/>

</xsd:sequence >

</xsd:complexType >

<xsd:simpleType name=" ErrorCodeType">

<xsd:restriction base=" xsd:unsignedInt">

<xsd:minInclusive value="100"/>

<xsd:maxInclusive value="999"/>

</xsd:restriction >

</xsd:simpleType >

</xsd:schema >

References
[1] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. Int’l. Journal of Supercomputer Applications, 15(3),
2001.

[2] Gnutella Community. Gnutella Protocol Specification v0.4.
dss.clip2.com/GnutellaProtocol04.pdf.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[4] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-resilient
wide-area location and routing. Technical report, U.C. Berkeley UCB//CSD-01-1141,
2001.

[5] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In ACM SIGCOMM, 2001.

[6] M. van Steen, P. Homburg, and A. Tanenbaum. A wide-area distributed system. IEEE
Concurrency, 1999.

[7] Bernard Traversat, Mohamed Abdelaziz, Mike Duigou, Jean-Christophe Hugly, Eric
Pouyoul, and Bill Yeager. Project JXTA Virtual Network, 2002. White Paper,
http://www.jxta.org.

[8] Steven Waterhouse. JXTA Search: Distributed Search for Distributed Networks, 2001.
White Paper, http://www.jxta.org.

[9] Project JXTA. JXTA v1.0 Protocols Specification, 2002. http://spec.jxta.org.

[10] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1999.

[11] UDDI Consortium. UDDI: Universal Description, Discovery and Integration.
http://www.uddi.org.

[12] Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Valerie Taylor, Rich Wolski, and
Martin Swany. A Grid Monitoring Architecture. Technical report, Global Grid Forum
Informational Document, January 2002. http://www.gridforum.org.

[13] Jason Lee, Dan Gunter, Martin Stoufer, and Brian Tierney. Monitoring Data Archives
for Grid Environments. In Proc. of the Int’l. IEEE/ACM Supercomputing Conference
(SC 2002), Baltimore, USA, November 2002. IEEE Computer Society Press.

[14] Ashley Beitz, Mirion Bearman, and Andreas Vogel. Service Location in an Open Dis-
tributed Environment. In Proc. of the Int’l. Workshop on Services in Distributed and
Networked Environements, Whistler, Canada, June 1995.

20



[15] Object Management Group. Trading Object Service. OMG RPF5 Submission, May
1996.

[16] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. IETF RFC
1777, March 1995.

[17] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid Informa-
tion Services for Distributed Resource Sharing. In Tenth IEEE Int’l. Symposium on
High-Performance Distributed Computing (HPDC-10), San Francisco, California, Au-
gust 2001.

[18] J. Waldo. The Jini architecture for network-centric computing. Communications of the
ACM, 42(7), July 1999.

[19] Erik Guttman. Service Location Protocol: Automatic Discovery of IP Network Services.
IEEE Internet Computing Journal, 3(4), 1999.

[20] Weibin Zhao, Henning Schulzrinne, and Erik Guttman. mSLP - Mesh Enhanced Service
Location Protocol. In Proc. of the IEEE Int’l. Conf. on Computer Communications and
Networks (ICCCN’00), Las Vegas, USA, October 2000.

[21] Steven E. Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony D. Joseph, and Randy Katz.
An Architecture for a Secure Service Discovery Service. In Fifth Annual Int’l. Conf. on
Mobile Computing and Networks (MobiCOM ’99), Seattle, WA, August 1999.

[22] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. In Proc. of the Symposium on
Operating Systems Principles, Kiawah Island, USA, December 1999.

[23] Wolfgang Hoschek. Peer-to-Peer Grid Databases for Web Service Discovery. Journal of
Concurrency and Computation: Practice and Experience (CCPE), 2002. Wiley Press.

[24] Wolfgang Hoschek. Dynamic Timeouts and Neighbor Selection Queries in Peer-to-Peer
Networks. In Int’l. Conf. on Networks, Parallel and Distributed Processing and Appli-
cations (NPDPA 2002), Tsukuba, Japan, October 2002.

[25] M. Mealling, P. Leach, and R. Salz. A UUID URN Namespace. IETF Internet Draft
draft-mealling-uuid-urn-00.txt, October 2002.

[26] Ron Rivest. The MD5 message-digest algorithm. IETF RFC 1321, April 1992.

[27] National Institute of Standards and Technology. Secure Hash Standard. Technical report,
FIPS 180-1, Washington, D.C., April 1995.

[28] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework for XQueries over
Dynamic Distributed Content and its Application for Scalable Service Discovery. PhD
Thesis, Technical University of Vienna, March 2002.

[29] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework for Scalable Service and
Resource Discovery. In Proc. of the 3rd Int’l. IEEE/ACM Workshop on Grid Computing
(Grid’2002), Baltimore, USA, November 2002. Springer Verlag.

[30] World Wide Web Consortium. XML Schema Part 0: Primer. W3C Recommendation,
May 2001.

21


